In previous post, I described the particular dynamics in which electricity production from intermittent energy sources, when growing in capacity, will not increase much at the production valleys, but will steeply increase at the production peaks. This means that, when capacity increases, the needed backup capacity will stay high, even at multiples of the current capacity, but at the same time measures have to be taken to suppress the ever growing peaks.
I illustrated this with a (celebrated) record high of wind production on June 8, followed by a (neglected) low production (June 9). In less than 12 hours, the production fell from almost 3,000 MWh (capacity factor of 81%) to almost 20 MWh (capacity factor of 0.5%). This illustration was only for electricity production by wind energy. There is a complicating factor: solar is also an intermittent energy source and can intensify as well as dampen the effect of wind.
That made me wonder how this interaction would look like when capacity of solar and wind increases over time. In real-life, this is not witnessed yet, this is still to come. It is however possible to study the dynamics of such a system by modeling it.