The last three posts were mostly about the adjustments of the ocean data done in the Karl 2015 paper. This because the adjustments in ocean data had the biggest impact on the result (that there wasn’t something like a “hiatus”). Kevin Marshall of the excellent blog manicbeancounter.wordpress.com reminded in a comment on previous post that surface datasets had issues as well.
I could agree with that one, I also had written a post in the first year of blogging: Things I took for granted: Global Mean Temperature,, that described how my perception of a global mean temperature changed from believer until skeptic and why I had a hard time to believe that the (surface) datasets were accurate enough to capture an 0.8 °C increase in temperature over 160 years.
Reading it back I was a bit surprised that I wrote this already in my first year of blogging. But, in line with the Karl et al paper, there were two things that I think were missing in this early piece.
First, that the data in the surface datasets are not measurements, but estimates derived from the temperature station measurements. In a way that could be concluded from the uneven spatial coverage, the convenience sampling and other measurement biases like Urban Heat Island, Time of Observation and who knows what more. This makes that the homogenized end result will just be an estimate of the actual mean temperature.