Category Archives: Energy

South Australia, the second cheapest electricity in Australia … or the most expensive?

Previous post detailed electricity prices of four states in Australia, coming to the conclusion that the electricity prices of South Australia were without any doubt the highest of those four states. In the meanwhile, I came across several other sources that also claimed that South Australia has the highest electricity price for consumers in Australia.

Now imagine my surprise reading the last paragraph of the Wikipedia article on “Energy in Australia” (my emphasis):

It was claimed in 2017 that South Australia had the most expensive electricity in the world [50] Another analysis claimed that South Australia has the second cheapest electricity in Australia.[51]

South Australia, the second cheapest electricity in Australia?!?!

In my limited dataset with only four states, South Australia had -by far- the highest average electricity price for consumers. This means that South Australia is at best the fourth cheapest in Australia (if all other not listed states were more expensive). How does this “second cheapest electricity” claim square with being at best the fourth most expensive, possibly even the most expensive?

Continue reading

South Australia, at lonely heights

It is often claimed that energy sources like solar and wind are cheap or even cheaper than some conventional power sources like coal, gas or nuclear. If this is really true, than one would expect that energy prices in countries with more solar and wind go down or at least being less than in countries powered by conventional sources. That doesn’t seem to be the case, on the contrary. I already looked at energy prices of Denmark and Germany a couple years ago. I then came to the conclusion that these two countries not only had by far the highest share of solar and wind, but also by far the highest consumer prices.

What about South Australia? It also has a high share of solar and wind, how does its electricity price for consumers compare to the other states within Australia?

Continue reading

At a lower cost … compared to what exactly?

Just an update on previous post about new big batteries to be built in New South Wales. In that post, the author made the claim that grid-size batteries are cost-effective and come at a low(er) cost. Here are the instances in the article were such claims are made (my emphasis):

In doing so, TransGrid will demonstrate that batteries can provide the most cost-effective solution for NSW’s projected upcoming inertia shortfall,” Miller said.

This innovation will help accelerate the industry’s transformation to a low-carbon energy system, at a lower cost to customers” she said.

Batteries offer a solution to this challenge at a small fraction of the cost of traditional technologies such as synchronous condensers.

Research and results from the trial will be shared to support future projects and help demonstrate that battery technology is a low cost and technically viable solution to the emerging challenge created by the transformation of the generation sector.

Again, this looks impressive and also confirms the narrative of the media and some researchers that renewable technologies are cheap. If this is really true, then migrating to a combination of solar, wind and batteries seems the most logical thing to do.

However, not everything is what it seems.

Continue reading

As effective as 18 gnats peeing on a fire

It seems I keep stumbling upon hooray stories about Australian grid batteries. I found this reneweconomy article about a new Tesla battery that will be built in New South Wales. The article is titled “Transgrid to build Australia’s first Tesla Megapack big battery in western Sydney” and the author is Giles Parkinson. I remember him from a cheering and one-sided article about the Hornsdale Power Reserve and this article seems not much different.

The first paragraph provides the crux of the story (my emphasis):

Transmission company Transgrid is to build the first big battery in Australia using Tesla’s recently introduced Megapack battery technology, and what is likely to [sic] the first of more than 10 big batteries to be built across NSW as it they are important in face of the looming retirement of its ageing coal fleet..

A new big Tesla battery will be built, this time in New South Wales and likely 10+ big batteries will follow. More, these batteries are built in preparation of the retirement of the New South Wales coal power plants over the next 10 to 12 years…

This all sounds pretty impressive, but I wonder what order of magnitude we are talking about here.

Continue reading

Blackouts: candlelight dinners and evenings without television?

Around the same time that I started writing previous post, I came across the article Guaranteeing power at all times is absurd (Dutch ahead) about our energy security. It is an opinion piece by Belgian economist Etienne De Callataÿ after our new Federal Government announced its intention of closing our nuclear infrastructure by 2025.

In that article, he makes the case that security of electricity supply should not be top priority for our Government and goes as far to write that one or two days of blackout per year is not the end of the world…

I think that I can somehow understand his reasoning, but first let’s look how De Callataÿ explains his strategy.

Continue reading

Our new Federal Government

While I was blogging about the grid batteries in South Australia, we got a new Federal Government. It took a while, we were without a functional Federal Government since December 2018 when the then coalition broke up. This new coalition consists of seven parties from four different political groups. This Frankenstein coalition want to be called the “Vivaldi” coalition (after the violin concertos “The Four Seasons” by Vivaldi, representing the colors of the four political colors of the groups in the coalition). To make such a coalition work, compromises had to be made and also political presents had to be given.

Probably one of those presents is that the Minister of Energy is provided by the Green party. Our Minister of Energy now is Tinne Van der Straeten and the readers of this blog know her as the politician who managed to increase, ahem, fossil fuel subsidies and the Green party was apparently proud of that achievement.

The new coalition is very ambitious. When it comes to energy, they aim for the closure of the nuclear power plants by … 2025. To put that in perspective, our nuclear plants currently produce almost half of our electricity and this amount of power needs to be replaced within the next five years (it took decades to come to ten or so percent of solar and wind). They want to do this replacement by stimulating intermittent technologies, cooperation with neighbor countries (increased import and export), energy saving and also some gas-fueled power plants will be needed too. At the same time they also want to make energy cheaper, ensure energy security, create more jobs and lower emissions. All this without having to increase taxes…

Continue reading

The fingerprint of solar and wind on import/export balance

The subject of previous post is how South Australia, having a high share of solar and wind, balances its grid. While crunching the numbers, I noticed that there generally is more import when electricity production by solar and wind is low and that there is more export when electricity production by solar and wind is high. This reminded me of a post I wrote about the German Energiewende in which I looked at the import/export balance and compared it with solar, with wind, with solar plus wind and with lignite. The import/export balance clearly followed the solar plus wind curve, but the peaks were somewhat topped off.

This made me wonder whether the same is true of the South Australia data. Let us first look at the same graph from previous post, but overlayed with the import/export balance curve in red (click to enlarge for a much clearer view):

AEMO South Australia charts0011b Fuelmix vs import export balance small

Continue reading

About intermittency and being a net exporter

While writing the post on the upgrade of the Hornsdale Power Reserve, I became curious how South Australia balances its grid. Looking into the data, it became pretty clear that it aren’t the batteries that doing the balancing. According to the fuel mix data of AEMO, the battery storage output is insignificant compared to the huge swings in output of solar and wind power.

There are several balancing strategies possible. For example, in a previous series on the German energiewende, I found that Germany’s strategy is to use fossil fuels (gas, coal and even lignite) when there is not enough solar & wind and export the surplus to the neighboring countries when there is too much solar & wind.

South Australia also has a high share of solar and wind, so how do they do it?

Continue reading

When solar and wind capacity increase

When pointing to the huge fluctuations of solar and wind production in previous post, I wrote that these fluctuations will only grow when South Australia advances on its path towards 100% renewable energy. Looking at the fuel mix and demand data that I had gathered until then, I noticed a fine example of exactly that. Just look at the fuel mix and demand data:

AEMO South Australia (charts0011a) overview

Let’s focus on the minimum on September 5 at 20:00. That is around the time that I looked for the first time at the overview panel (see previous post). The data showed that the total production of solar and wind was 4.341 MWh, which is 0.29% of what was produced at that moment. Contrast this to the peak of 1,258.486 MW the next day around 22:00, just after the evening peak when energy demand was slowly starting to decrease. It is this dynamics that will lead to the fluctuations that I wrote about.

Continue reading

Hornsdale Power Reserve: the share of battery power in South Australia

The Hornsdale Power Reserve is about to get an upgrade. The Hornsdale Power Reserve is a grid-sized battery build by Tesla in South Australia. It has a capacity of 100 MW and can deliver 129 MWh. I did a series on it back in March, starting with the claim that this battery could replace natural gas for peaking and gap-filling (which is not the case). The upgrade will add a capacity of 50 MW and it can deliver 64.5 MWh.

The pv-magazine article points out that the additional capacity will be put to use for frequency control and inertia. I could understand that, the main function of the original 100 MW battery is already frequency control and this service generated quite some money for its owner. There was also this claim (my emphasis):

ARENA, which contributed an AU$8 million grant toward the expansion, also believes the upgraded battery could also help to reduce renewable curtailment in South Australia. Indeed, AEMO’s Chief System Design and Engineering Officer, Alex Wonhas, said that the expansion enabled the “optimal use of this world leading battery to support higher levels of renewable integration.”

The author also didn’t shy away from using terms like “mega” and “highly successful” in the article. That all sounds very promising, but from looking into the Hornsdale Power Reserve while writing the earlier series, I think it is presented way nicer than it actually is. Even a “mega”-battery of 100 MW / 129 MWh is still tiny grid-wise and adding another 50 MW / 64.5 MWh will probably not make much of a difference.

This made me wonder: what is the current share of battery power in the South Australia grid? And what difference would this upgrade make once it gets online (the homepage of the Hornsdale website states that the expansion is still “under construction”)?

Time to look at the data.

Continue reading